ABOUT CSIR-NET Coaching In Delhi for Life Sciences | Study Material for NET life Sciences


CSIR NET/JRF exam is a biannual exam held in June (3rd week) and December (3rd week) for the award of CSIR LS (NET) (lectureship) (LS) and Junior research fellowship (JRF). This exam is conducted by EMR division of the HRD group of Council of Scientific & Industrial Research (CSIR) for pursuing higher order research in University Departments/Institutes of National Importance/National Laboratories and Institutes of CSIR in various fields of Science & Technology and Medical Sciences.

If you are planning to pursue a career in Net – Life sciences and looking for a reliable coaching institute in Delhi then Genesis Academy is the most appropriate option for you. Having immense and in-depth expertise in providing coaching in the relevant fields, we have slowly and gradually consolidated our presence through an exceptional track record. Your search for Net Life Sciences coaching in Delhi ends with us wherein you are guaranteed of success. We have designed our programs and schedules in a way that are well aligned with the entrance exam pre and post requirements for reaping the best benefits for you.

At Genesis Academy, we ensure that the offered programs are holistic and prepare you for the exams in addition to the special focus on the personality development aspect too. With a learned team of professors, top rankers and other educationists, we take pride in calling ourselves the best institute for CSIR Net coaching in Delhi for Life Sciences. CSIR Net is an exam that is conducted twice every year (June and December) for awarding CSIR LS (NET) lectureship and Junior Research Fellowship (JRF).

Comprehensive course curriculum for CSIR Net Life Science Coaching

As a part of our comprehensive program, every aspirant gets the following advantages in addition to having the most experienced teachers imparting knowledge.

  • All the study material along with test series for self-evaluation from time to time
  • Lectures from proficient mentors focusing on the practical implications of the syllabus to be covered
  • The ideal mix of classes, assessments, doubt clarifying sessions
  • Unit tests are conducted in sync with examination pattern
  • Regular feedback sessions are conducted to familiarize the students with their strengths and weaknesses

The faculty is always available to clarify your doubts to ensure that you don’t get stuck during your preparations

With the best facilities at bay, the students stay abreast with the latest happenings in their respective area of choice. With a high success rate, we offer, undoubtedly, the best CSIR Net coaching in Delhi for Life Sciences. The students who decide to choose us as their preparation partner and guide are sure to succeed in just no time. Our aim is to make them realize that they have the potential to clear the examination in one go and then comes the further process. Ideally, the programs are fabricated in a way that is suitable to all however in case there is an exception then we do not mind taking deviations for those special cases as well. Although we believe in repeating the topic and problem areas in the classroom to clarify every minute doubt that is left in the student’s mind. We encourage the students to open up about their doubts and fears in the very beginning to ensure that their weaknesses in preparing for CSIR Net do not make them lag behind others. Our course structure and training methodology will never put any kind of pressure on the aspirant to keep up their morale throughout their preparation and successful journey.

To be able to focus on every aspirant individually, the intake per batch is reasonable that does not anyhow to hamper any student’s progress. The Genesis library is full of study material that makes access to the required information and content matter easier for the students. We assure you of exceptional Net Life Sciences coaching made available at competitive fees with high success rate. With students holding good ranks in the entrance examinations, our track record has been that of creating achievers.

We love to see our students excel in every field they choose especially the entire Life Science and Biotechnology spectrum. At Genesis Academy, we are sure that we and the students compliment each other to achieve results that are par excellence making lot many dreams come true. We are sure that your search for CSIR Net coaching in Delhi for Life Sciences ends with us. So what are you waiting for? Enroll today and get going to win the competition that awaits you.

NET life sciences are the most difficult exam in this category. It not only aims to test the knowledge of the subject but also qualify for scientific analysis. The design of the paper is unique with a broad curriculum and is adapted to questions from different subjects that offer equal opportunities to students of all life sciences.

One must have a clear strategy to break the exam. In general, students have sufficient knowledge of the specific subject matter of their teacher’s program only. That makes it hard for students to master other life science topics. Candidates should begin to prepare for topics such as cell biology first because they are part of the high school curriculum and a standard part of plant and animal biology at the intermediate level and the graduation level. NET life sciences is an essential aspect for all students of life sciences. Therefore, it is the easiest subject to begin to prepare.

Hard work and determination are always paid. Therefore, regularly reviewing the of the study material for NET life sciences and assigning some hours to study in the morning and the evening will help the candidates to obtain good results in the exam. Applicants who want to scan the exam at the same time and need a little advice to do the preparation focused will find this publication very useful.

Understanding the NET life sciences curriculum

Knowledge of the curriculum is essential. That will give the candidates know about the pattern of questions, the topics covered and the number of questions rose in the exam. Unless the candidates are familiar with the curriculum, they cannot prepare for the exam. Without knowing the issues, the candidates will be lost in sight.

Review the Study Material for NET life Sciences Regularly

Candidates should review the topics regularly so as not to miss a single topic. That is a competitive exam, and the questions can come from anywhere, so it is necessary to know each topic. I spend at least a few hours a day for the review.

Look at the past CSIR net life science question papers

There is the possibility of repeating questions on a CSIR net life science question papers from previous years. Therefore, candidates must solve at least the question sheets of the last ten years. That not only helps them increase their speed, but it will also help to solve the questions accurately. Candidates can even make an evaluation of the section of study material for NET life sciences that takes time.

Have confidence

For you to eliminate any competitive exam, trust is necessary. Solve those questions that candidates have enough faith. Do not try to try all the paper. Also, there is a concept of negative labeling, so each step of your steps must be taken very carefully. Any wrong answer will bring you negative signs.

Avoid solving difficult questions

Candidates should avoid trying difficult and time-consuming questions. Investing time in such questions would be a total waste. Also, easy and reliable candidates will be left behind.


Candidates must master the art of using abbreviations. Solving long CSIR net life science question papers using shortcuts will save time. That is useful in the mental capacity section where calculations are included. During internal training, candidates should use abbreviations.



Indian citizens, who are residing in India are only eligible for the award of CSIR NET/JRF fellowships. Candidates who have secured a M.Sc or equivalent degree with 55% marks for general category and 50% marks for SC/ST, Physically and Visually Handicapped candidates and Ph.D. degree holders who had passed Master’s degree prior to 19th September 1991 are eligible.


For the award of JRF, the minimum age limit is 19 years and the maximum age limit is 28 years, which is relaxable by 5 years in case of candidates belonging to Schedule Castes/Schedule Tribes/OBC, Physically Handicapped/Visually Handicapped and female applicants. For the award of CSIR LS (NET) (Lecturership), there is no upper age limit.


A new pattern of CSIR NET/JRF exam has been introduced since June 2011. Now, there is a single paper, based on multiple choice Question (MCQ) pattern, having 200 maximum marks and a duration of 3 hours. The question paper is divided into 3 parts (A,B &C).

1). Part ‘A’ shall be common to all subjects. This part shall be a test containing a maximum of 20 questions of General Aptitude. The candidates shall be required to answer any 15 questions of two marks each. The total marks allocated to this section shall be 30 out of 200.

2). Part ‘B’ shall   contain subject-related conventional MCQs. The total marks allocated to this section shall be 70 out of 200. The maximum number of questions to be attempted shall be in the range of 20-35.

3). Part ‘C’ shall contain higher value questions that may test the candidate’s knowledge of scientific concepts and/or application of the scientific concepts. The questions shall be of analytical nature where a candidate is expected to apply the scientific knowledge to arrive at the solution to the given scientific problem.  The total marks allocated to this section shall be 100 out of 200.


CSIR LS (NET) qualification is now mandatory for coaching in any University/college in India. Students who qualify CSIR JRF are also eligible for lectureship. Moreover, JRF qualification is considered more prestigious as JRF qualified students are entitled to a monthly stipend of 25,000 p.m. for a period of two years. On Completion of two years as JRF and if the fellow is registered for PhD, the fellowship will be upgraded to SRF (NET) and the stipend will be increased to Rs. 28,000/- p.m for the 3rd and subsequent years


A. Structure of atoms, molecules and chemical bonds.
B. Composition, structure and function of biomolecules (carbohydrates, lipids, proteins, nucleic acids and vitamins).
C. Stablizing interactions (Van der Waals, electrostatic, hydrogen bonding, hydrophobic interaction, etc.).
D. Principles of biophysical chemistry (pH, buffer, reaction kinetics, thermodynamics, colligative properties).
E. Bioenergetics, glycolysis, oxidative phosphorylation, coupled reaction, group transfer, biological energy transducers.
F. Principles of catalysis, enzymes and enzyme kinetics, enzyme regulation, mechanism of enzyme catalysis, isozymes
G. Conformation of proteins (Ramachandran plot, secondary structure, domains, motif and folds).
H. Conformation of nucleic acids (helix (A, B, Z), t-RNA, micro-RNA).
I. Stability of proteins and nucleic acids.
J. Metabolism of carbohydrates, lipids, amino acids nucleotides and vitamins.


A) Membrane structure and function (Structure of model membrane, lipid bilayer and membrane protein diffusion, osmosis, ion channels, active transport, membrane pumps, mechanism of sorting and regulation of intracellular transport,electrical properties of membranes).
B) Structural organization and function of intracellular organelles (Cell wall, nucleus, mitochondria, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, plastids, vacuoles, chloroplast, structure & function of cytoskeleton and its role in motility).
C) Organization of genes and chromosomes (Operon, unique and repetitive DNA, interrupted genes, gene families, structure of chromatin and chromosomes, heterochromatin, euchromatin, transposons).
D) Cell division and cell cycle (Mitosis and meiosis, their regulation, steps in cell cycle, regulation and control of cell cycle).
E) Microbial Physiology (Growth yield and characteristics, strategies of cell division, stress response)


A) DNA replication, repair and recombination (Unit of replication, enzymes involved, replication origin and replication fork, fidelity of replication, extrachromosomal replicons, DNA damage and repair mechanisms, homologous and site-specific recombination).
B) RNA synthesis and processing (transcription factors and machinery, formation of initiation complex, transcription activator and repressor, RNA polymerases, capping, elongation, and termination, RNA processing, RNA editing, splicing, and polyadenylation, structure and function of different types of RNA, RNA transport).
C) Protein synthesis and processing (Ribosome, formation of initiation complex, initiation factors and their regulation, elongation and elongation factors, termination, genetic code, aminoacylation of tRNA, tRNA-identity, aminoacyl tRNA synthetase, and translational proof-reading, translational inhibitors, Post- translational modification of proteins).
D) Control of gene expression at transcription and translation level (regulating the expression of phages, viruses, prokaryotic and eukaryotic genes, role of chromatin in gene expression and gene silencing).

4. Cell communication and cell signaling

A) Host parasite interaction Recognition and entry processes of different pathogens like bacteria, viruses into animal and plant host cells, alteration of host cell behavior by pathogens, virus-induced cell transformation, pathogen-induced diseases in animals and plants, cell-cell fusion in both normal and abnormal cells.
B) Cell signaling Hormones and their receptors, cell surface receptor, signaling through G-protein coupled receptors, signal transduction pathways, second messengers, regulation of signaling pathways, bacterial and plant two-component systems, light signaling in plants, bacterial chemotaxis and quorum sensing.
C) Cellular communication Regulation of hematopoiesis, general principles of cell communication, cell adhesion and roles of different adhesion molecules, gap junctions, extracellular matrix, integrins, neurotransmission and its regulation.
D) Cancer Genetic rearrangements in progenitor cells, oncogenes, tumor suppressor genes, cancer and the cell cycle, virus-induced cancer, metastasis, interaction of cancer cells with normal cells, apoptosis, therapeutic interventions of uncontrolled cell growth.
E) Innate and adaptive immune system Cells and molecules involved in innate and adaptive immunity, antigens, antigenicity and immunogenicity. B and T cell epitopes, structure and function of antibody molecules. generation of antibody diversity, monoclonal antibodies, antibody engineering, antigen-antibody interactions, MHC molecules, antigen processing and presentation, activation and differentiation of B and T cells, B and T cell receptors, humoral and cell-mediated immune responses, primary and secondary immune modulation, the complement system, Toll-like receptors, cell-mediated effector functions, inflammation, hypersensitivity and autoimmunity, immune response during bacterial (tuberculosis), parasitic (malaria) and viral (HIV) infections, congenital and acquired immunodeficiencies, vaccines.


A) Basic concepts of development: Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; stem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and transgenics in analysis of development
B) Gametogenesis, fertilization and early development: Production of gametes, cell surface molecules in sperm-egg recognition in animals; embryo sac development and double fertilization in plants; zygote formation, cleavage, blastula formation, embryonic fields, gastrulation and formation of germ layers in animals; embryogenesis, establishment of symmetry in plants; seed formation and germination.
C) Morphogenesis and organogenesis in animals : Cell aggregation and differentiation in Dictyostelium; axes and pattern formation in Drosophila, amphibia and chick; organogenesis – vulva formation in Caenorhabditis elegans, eye lens induction, limb development and regeneration in vertebrates; differentiation of neurons, post embryonic development- larval formation, metamorphosis; environmental regulation of normal development; sex determination.
D) Morphogenesis and organogenesis in plants: Organization of shoot and root apical meristem; shoot and root development; leaf development and phyllotaxy; transition to flowering, floral meristems and floral development in Arabidopsis and Antirrhinum
E) Programmed cell death, aging and senescence


A. Photosynthesis – Light harvesting complexes; mechanisms of electron transport; photoprotective mechanisms; CO2 fixation-C3, C4 and CAM pathways.
B. Respiration and photorespiration – Citric acid cycle; plant mitochondrial electron transport and ATP synthesis; alternate oxidase; photorespiratory pathway.
C. Nitrogen metabolism – Nitrate and ammonium assimilation; amino acid biosynthesis.
D. Plant hormones – Biosynthesis, storage, breakdown and transport; physiological effects and mechanisms of action.
E. Sensory photobiology – Structure, function and mechanisms of action of phytochromes, cryptochromes and phototropins; stomatal movement; photoperiodism and biological clocks.
F. Solute transport and photoassimilate translocation – uptake, transport and translocation of water, ions, solutes and macromolecules from soil, through cells, across membranes, through xylem and phloem; transpiration; mechanisms of loading and unloading of photoassimilates.
G. Secondary metabolites – Biosynthesis of terpenes, phenols and nitrogenous compounds and their roles.
H. Stress physiology – Responses of plants to biotic (pathogen and insects) and abiotic (water, temperature and salt) stresses.


A. Blood and circulation – Blood corpuscles, haemopoiesis and formed elements, plasma function, blood volume, blood volume regulation, blood groups, haemoglobin, immunity, haemostasis.
B. Cardiovascular System: Comparative anatomy of heart structure, myogenic heart, specialized tissue, ECG – its principle and significance, cardiac cycle, heart as a pump, blood pressure, neural and chemical regulation of all above.
C. Respiratory system – Comparison of respiration in different species, anatomical considerations, transport of gases, exchange of gases, waste elimination, neural and chemical regulation of respiration.
D. Nervous system – Neurons, action potential, gross neuroanatomy of the brain and spinal cord, central and peripheral nervous system, neural control of muscle tone and posture.
E. Sense organs – Vision, hearing and tactile response.
F. Excretory system – Comparative physiology of excretion, kidney, urine formation, urine concentration, waste elimination, micturition, regulation of water balance, blood volume, blood pressure, electrolyte balance, acid-base balance.
G. Thermoregulation – Comfort zone, body temperature – physical, chemical, neural regulation, acclimatization.
H. Stress and adaptation
I. Digestive system – Digestion, absorption, energy balance, BMR.
J. Endocrinology and reproduction -Endocrine glands, basic mechanism of hormone action, hormones and diseases; reproductive processes, gametogenesis, ovulation, neuroendocrine regulation


A) Mendelian principles : Dominance, segregation, independent assortment.
B) Concept of gene : Allele, multiple alleles, pseudoallele, complementation tests
C) Extensions of Mendelian principles : Codominance, incomplete dominance, gene interactions, pleiotropy, genomic imprinting, penetrance and expressivity, phenocopy, linkage and crossing over, sex linkage, sex limited and sex influenced characters.
D) Gene mapping methods : Linkage maps, tetrad analysis, mapping with molecular markers, mapping by using somatic cell hybrids, development of mapping population in plants.
E) Extra chromosomal inheritance : Inheritance of Mitochondrial and chloroplast genes, maternal inheritance.
F) Microbial genetics : Methods of genetic transfers – transformation, conjugation, transduction and sex-duction, mapping genes by interrupted mating, fine structure analysis of genes.
G) Human genetics : Pedigree analysis, lod score for linkage testing, karyotypes, genetic disorders.
H) Quantitative genetics : Polygenic inheritance, heritability and its measurements, QTL mapping.
I) Mutation : Types, causes and detection, mutant types – lethal, conditional, biochemical, loss of function, gain of function, germinal verses somatic mutants, insertional mutagenesis.
J) Structural and numerical alterations of chromosomes : Deletion, duplication, inversion, translocation, ploidy and their genetic implications.
K) Recombination : Homologous and non-homologous recombination including transposition.


A. Principles & methods of taxonomy: Concepts of species and hierarchical taxa, biological nomenclature, classical & quantititative methods of taxonomy of plants, animals and microorganisms.
B. Levels of structural organization: Unicellular, colonial and multicellular forms. Levels of organization of tissues, organs & systems. Comparative anatomy, adaptive radiation, adaptive modifications.
C. Outline classification of plants, animals & microorganisms: Important criteria used for classification in each taxon. Classification of plants, animals and microorganisms. Evolutionary relationships among taxa.
D. Natural history of Indian subcontinent: Major habitat types of the subcontinent, geographic origins and migrations of species. Comman Indian mammals, birds. Seasonality and phenology of the subcontinent.
E. Organisms of health & agricultural importance: Common parasites and pathogens of humans, domestic animals and crops.
F. Organisms of conservation concern: Rare, endangered species. Conservation strategies.


A. The Environment: Physical environment; biotic environment; biotic and abiotic interactions.

B Habitat and Niche: Concept of habitat and niche; niche width and overlap; fundamental and realized niche; resource partitioning; character displacement.
C. Population Ecology: Characteristics of a population; population growth curves; population regulation; life history strategies (r and K selection); concept of metapopulation – demes and dispersal, interdemic extinctions, age structured populations.
D. Species Interactions: Types of interactions, interspecific competition, herbivory, carnivory, pollination, symbiosis.
E. Community Ecology: Nature of communities; community structure and attributes; levels of species diversity and its measurement; edges and ecotones.
F. Ecological Succession: Types; mechanisms; changes involved in succession; concept of climax.
G. Ecosystem Ecology: Ecosystem structure; ecosystem function; energy flow and mineral cycling (C,N,P); primary production and decomposition; structure and function of some Indian ecosystems: terrestrial (forest, grassland) and aquatic (fresh water, marine, eustarine).
H. Biogeography: Major terrestrial biomes; theory of island biogeography; biogeographical zones of India.
I. Applied Ecology: Environmental pollution; global environmental change; biodiversity: status, monitoring and documentation; major drivers of biodiversity change; biodiversity management approaches.
J. Conservation Biology: Principles of conservation, major approaches to management, Indian case studies on conservation/management strategy (Project Tiger, Biosphere reserves).


A. Emergence of evolutionary thoughts Lamarck; Darwin–concepts of variation, adaptation, struggle, fitness and natural selection; Mendelism; Spontaneity of mutations; The evolutionary synthesis.
B. Origin of cells and unicellular evolution: Origin of basic biological molecules; Abiotic synthesis of organic monomers and polymers; Concept of Oparin and Haldane; Experiement of Miller (1953); The first cell; Evolution of prokaryotes; Origin of eukaryotic cells; Evolution of unicellular eukaryotes; Anaerobic metabolism, photosynthesis and aerobic metabolism.
C. Paleontology and Evolutionary History: The evolutionary time scale; Eras, periods and epoch; Major events in the evolutionary time scale; Origins of unicellular and multi cellular organisms; Major groups of plants and animals; Stages in primate evolution including Homo.
D. Molecular Evolution: Concepts of neutral evolution, molecular divergence and molecular clocks; Molecular tools in phylogeny, classification and identification; Protein and nucleotide sequence analysis; origin of new genes and proteins; Gene duplication and divergence.
E. The Mechanisms: Population genetics – Populations, Gene pool, Gene frequency; Hardy-Weinberg Law; concepts and rate of change in gene frequency through natural selection, migration and random genetic drift; Adaptive radiation; Isolating mechanisms; Speciation; Allopatricity and Sympatricity; Convergent evolution; Sexual selection; Co-evolution.
F. Brain, Behavior and Evolution: Approaches and methods in study of behavior; Proximate and ultimate causation; Altruism and evolution-Group selection, Kin selection, Reciprocal altruism; Neural basis of learning, memory, cognition, sleep and arousal; Biological clocks; Development of behavior; Social communication; Social dominance; Use of space and territoriality; Mating systems, Parental investment and Reproductive success; Parental care; Aggressive behavior; Habitat selection and optimality in foraging; Migration, orientation and navigation; Domestication and behavioral changes.


A. Microbial fermentation and production of small and macro molecules.
B. Application of immunological principles, vaccines, diagnostics. Tissue and cell culture methods for plants and animals.
C. Transgenic animals and plants, molecular approaches to diagnosis and strain identification.
D. Genomics and its application to health and agriculture, including gene therapy.
E. Bioresource and uses of biodiversity.
F. Breeding in plants and animals, including marker – assisted selection
G. Bioremediation and phytoremediation
H. Biosensors


A. Molecular Biology and Recombinant DNA methods:
Isolation and purification of RNA , DNA (genomic and plasmid) and proteins, different separation methods.
Analysis of RNA, DNA and proteins by one and two dimensional gel electrophoresis, Isoelectric focusing gels.
Molecular cloning of DNA or RNA fragments in bacterial and eukaryotic systems.
Expression of recombinant proteins using bacterial, animal and plant vectors.
Isolation of specific nucleic acid sequences
Generation of genomic and cDNA libraries in plasmid, phage, cosmid, BAC and YAC vectors.
In vitro mutagenesis and deletion techniques, gene knock out in bacterial and eukaryotic organisms.
Protein sequencing methods, detection of post translation modification of proteins.
DNA sequencing methods, strategies for genome sequencing.
Methods for analysis of gene expression at RNA and protein level, large scale expression, such as micro array based techniques
Isolation, separation and analysis of carbohydrate and lipid molecules
RFLP, RAPD and AFLP techniques

B. Histochemical and Immunotechniques:
Antibody generation, Detection of molecules using ELISA, RIA, western blot, immunoprecipitation, fluocytometry and immunofluorescence microscopy, detection of molecules in living cells, in situ localization by techniques such as FISH and GISH.

C. Biophysical Method:
Molecular analysis using UV/visible, fluorescence, circular dichroism, NMR and ESR spectroscopy Molecular structure determination using X-ray diffraction and NMR, Molecular analysis using light scattering, different types of mass spectrometry and surface plasma resonance methods.

D. Statisitcal Methods:
Measures of central tendency and dispersal; probability distributions (Binomial, Poisson and normal); Sampling distribution; Difference between parametric and non-parametric statistics; Confidence Interval; Errors; Levels of significance; Regression and Correlation; t-test; Analysis of variance; X2 test;; Basic introduction to Muetrovariate statistics, etc.

E. Radiolabeling techniques:
Detection and measurement of different types of radioisotopes normally used in biology, incorporation of radioisotopes in biological tissues and cells, molecular imaging of radioactive material, safety guidelines.

F. Microscopic techniques:

Visulization of cells and subcellular components by light microscopy, resolving powers of different microscopes, microscopy of living cells, scanning and transmission microscopes, different fixation and staining techniques for EM, freeze-etch and freeze- fracture methods for EM, image processing methods in microscopy.

G. Electrophysiological methods:
Single neuron recording, patch-clamp recording, ECG, Brain activity recording, lesion and stimulation of brain, pharmacological testing, PET, MRI, fMRI, CAT .

H. Methods in field biology:
Methods of estimating population density of animals and plants, ranging patterns through direct, indirect and remote observations, sampling methods in the study of behavior, habitat characterization: ground and remote sensing methods

Our programme for CSIR-NET/JRF

Regular classroom programme (GA1)

The regular classroom program of Genesis are tailor made capsule program designed for CSIR JRF, Integrated M.Sc integrated and Ph.D entrance exams. The program lasts about 5 months and gives a comprehensive coverage of Paper ‘A’,‘B’ & ‘C’ of CSIR new pattern along with test series.

(GA1 course duration: 5 months)

Classes on weekdays except public holidays. (4-6 hours daily)
Target group: M.Sc/M.Tech degree qualified students

Weekend classroom programme (GA2)

The weekend classroom program of Genesis are tailor made capsule program designed for CSIR JRF, Integrated M.Sc integrated and Ph.D entrance exams for students who are still in their degree program. The program lasts about 8-9 months and gives a comprehensive coverage of Paper ‘A’,‘B’ & ‘C’ of CSIR new pattern along with test series.

(GA2 course duration: 8-9 months)

Classes on weekdays except public holidays. (4-6 hours daily)
Target group: M.Sc/M.Tech students in their final year.

Reference books for CSIR-NET/JRF

  • Nelson, D.L. and Cox, M.M.(2009). Lehninger`s Principles of Biochemistry, W.H. Freeman and Company, New York.
  • Freifelder, D. (1982) Physical Biochemistry 2nd edition, W.H. Freeman and Co., N.Y. USA.
  • Voet, D. and Voet, J.G.( 2004). Biochemistry, 3rd Edition, John Wiley & Sons, Inc. USA.
  • Karp, G. 2010. Cell and Molecular Biology: Concepts and Experiments. 6th Edition. John Wiley & Sons. Inc
  • Cooper, G.M. and Hausman, R.E. 2009. The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.
  • Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. 2009. The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Francisco..Y. USA.
  • Watson, J. D., Baker T.A., Bell, S. P., Gann, A., Levine, M., and Losick, R., 2008 Molecular Biology of the Gene 6th edition. Cold Spring Harbour Lab. Press, Pearson Pub.
  • Darnell, J.,Lodish, H. and Baltimore, D.( 2008). Molecular Cell Biology, Scientific American Books.
  • Kindt, T.J.,Goldsby, R.A. and Osborne, B.A.( 2007). Kuby Immunology, W.H. Freeman and Co, New York.
  • Murphy, K.,Travers, P. and Walport, M.( 2008). Janeway�s Immunobiology, Garland Science, Taylor and Francis Group, LLC.
  • Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). VIII ed. Principles of Genetics. Wiley India.
  • Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. XI Edition. Benjamin Cummings.
  • Primrose, S.B. and Twyman. R.M. Principles of gene manipulation and genomics. Blackwell Publishing , MA, USA
  • Glick, B.R., Pasternak, J.J. 2003 Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
WhatsApp chat
Total Visits:hit counter codes
hit counter codes